If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2=-6p+3
We move all terms to the left:
10p^2-(-6p+3)=0
We get rid of parentheses
10p^2+6p-3=0
a = 10; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·10·(-3)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{39}}{2*10}=\frac{-6-2\sqrt{39}}{20} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{39}}{2*10}=\frac{-6+2\sqrt{39}}{20} $
| (2÷c)×3.6=3.6 | | 27(v+18)=702 | | -1(6x-3)=6 | | 4c-33=65 | | 22(w-982)=22 | | 9m=-70 | | 13f+28=990 | | X+(2x+18)=180 | | 6.2g+3=3.2g+18 | | 5a^2=20+3a | | 5(w-727)=495 | | 5a^2=20+3 | | 15+10w=46 | | 5.8g+2=3.8g+14 | | 4(x-3)+1=12-3(1-2x) | | 2(x+1)=6x-45 | | 3x+11+x+41=180 | | 0.6+(1.9)=d | | -31-4x=-5(1+5x | | 31(b+11)=837 | | (x+20)(3x+60)=180 | | -7/3w=-21 | | -3y=4/9 | | 770=22(q-920) | | 840=21(n+2) | | 4-4x=-4x | | -4u/7=-28 | | 3(2+5h)=15h-6 | | 3+2d=4d-2d | | (4÷8)+k=6.7 | | 432=9(j-917) | | (5x+10)+(x+20)=180 |